
Mathematical optimization is used in many scientific and engineering 

domains, from robotics and image processing to communications. In 

robotics, for example, optimization helps compute collision-free trajectories; 

in image processing (e.g., MRI or Magnetic Resonance Imaging), it aids in 

denoising through matrix completion; and in network design, it enables 

maximizing data throughput subject to capacity constraints (e.g., Max Flow 

Min Cut).

ConicSolve.jl solves constrained optimization problems by applying primal-

dual Interior-point Methods (IPMs) to efficiently solve them. The solver 

handles a variety of problem classes, including Linear Programming (LP), 

Quadratic Programming (QP), Second Order Cone Programming (SOCP), 

and Semidefinite Programming (SDP).

using Pkg
Pkg.add("ConicSolve")
using ConicSolve

Ben-Tal, N. (2001). Lectures on Modern Convex Optimization. 

Blekherman, P. T. (2012). Semidefinite Optimization and Convex Algebraic 

Geometry. 

Boyd, V. (2009). Convex Optimization. 

Vandenberghe. (2010). The CVXOPT linear and quadratic cone program 

solvers.

Introduction

Installation

References

Features

• Solves LP, QP, SOCP and SDP problems

• Includes Nonnegative Orthant, Lorentz and Positive Semidefinite cones

• Minimal project dependencies (mainly LAPACK)

• Implements common array manipulation operations to reduce complexity 

in defining optimization problems

• Implement Semidefinite and Sum of Squares problems with ease using 

predefined models

• Modular (by design), users can define a custom KKT (Karush Kuhn 

Tucker) solver to utilize sparsity patterns and problem structure for 

optimal solver performance

• Open source (MIT License)

• Several scientific and engineering examples ready to be extended for real 

world application

• Native conic solver interface, reduce overhead associated with using 

dependencies when defining an optimization problem

ConicSolve.jl
A modular Primal-Dual Interior-Point Method Conic Optimization Solver

Alexander Leong

Software Engineer

http://alexanderleong.com

Components

The bottom layer shows that the only main dependency is Julia’s 

LinearAlgebra library. The second layer shows the various components that 

make up the optimization solver. Users can easily define their own cone 

types, provide a specific KKT solver or use array utilities to help construct 

an optimization problem. The third layer defines APIs for constructing 

various types of optimization problems.

The top layer consists of all example applications which extend from either 

the native or model-based APIs. The rank minimization (matrix completion) 

example (for example) uses the SDP model and trajectory optimization 

example uses the SOS model.

You may need to install further dependencies to run the specific examples. 

This modular approach allows the optimization solver to be performant, 

extensible for future emerging applications and versatile so it is suitable for 

solving large-scale problems or real-time embedded problems for example.

The high-level component diagram (see below) can serve as a guide for 

users and developers working with the project codebase.

Using the low-level API
using ConicSolve
p_1 = 16 # 16 x 16 SDP matrix
p_2 = 136 # 16*17/2 elements in lower triangular SDP matrix
A = [] # problem specific, replace with your values
G = [] # problem specific, replace with your values
P = [] # problem specific, replace with your values
b = [] # problem specific, replace with your values
c = [] # problem specific, replace with your values
h = [] # problem specific, replace with your values
cones::Vector{Cone} = []
push!(cones, PSDCone(p_1))
push!(cones, NonNegativeOrthant(p_2))
cone_qp = ConeQP(A, G, P, b, c, h, cones)
solver = Solver(cone_qp)
optimize!(solver)

Conic Form

x: is the decision variable

P, c: defines the objective in terms of x

A, b defines the linear equality constraints

G, h defines the linear inequality constraints

s defines x together with G, h with respect to the particular cone type

Many optimization problems can be converted into a conic form. The conic 

form allows the application of several cone types:

• Nonnegative Orthant

• Second Order Cone

• Positive Semidefinite Cone

Results

Solver parameters: η=σ, γ=1

Typical values for η are either 0 or σ and has been chosen arbitrarily, γ is 

Mehrotra correction and recommended be set to 1.

The above plot shows rapid convergence of the duality gap with just a few 

iterations for many common mathematical optimization problems.

See project documentation for specific details on problem formulation: 

https://github.com/alexander-leong/ConicSolve.jl

Future work
• Add support for CUDA based GPUs

• Add examples of SDP applications for Quantum Information Science

• Add more example applications

• Add additional mathematical functions to realize performance gains from 

exploiting problem structure and sparsity

• Investigate extensions to Primal Dual Interior-point optimization methods

• Investigate supporting more algebraic modelling frontends

JuliaCon 2025

Pittsburgh, PA

Last updated: 15/02/2025

Mathematical Optimization Process


	Slide 1

